2-Amino-1,3,4-thiadiazoles as Glutaminyl Cyclases Inhibitors Increase Phagocytosis through Modification of CD47-SIRPα Checkpoint

ACS Med Chem Lett. 2022 Aug 16;13(9):1459-1467. doi: 10.1021/acsmedchemlett.2c00256. eCollection 2022 Sep 8.

Abstract

Glutaminyl cyclases (QC, isoQC) convert N-terminal glutamine or glutamate into pyroglutamate (pGlu) on substrates. IsoQC has recently been demonstrated to promote pGlu formation on the N-terminus of CD47, the SIRPα binding site, contributing to the "don't eat me" cancer immune signaling of CD47-SIRPα. We developed new QC inhibitors by applying a structure-based optimization approach starting from fragments identified through library screening. Screening of metal binding fragments identified 5-(1H-benzimidazol-5-yl)-1,3,4-thiadiazol-2-amine (9) as a potent fragment, and further modification provided 5-(1-(3-methoxy-4-(3-(piperidin-1-yl)propoxy)benzyl)-1H-benzo[d]imidazol-5-yl)-1,3,4-thiadiazol-2-amine (22b) as a potent QC inhibitor. Treatment with 22b in A549 and H1975 lung cancer cells decreased the CD47/αhCD47-CC2C6 interaction, indicative of the CD47/SIRPα interaction, and enhanced the increased phagocytic activity of both THP-1 and U937 macrophages.